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Abstract

The natural frequencies of symmetrically laminated plates of variable thickness are analyzed using the
finite strip transition matrix technique. In this paper, the natural frequencies of such plates are determined
for edges with being elastically restrained against both rotation and transition or both.
A successive conjunction of the classical finite strip method and the transition matrix method is applied

to develop a new modification of the finite strip method to reduce the complexity of the problem. The
displacement function is expressed as the product of a basic trigonometric series function in the longitudinal
direction and an unknown function that has to be determined in the other direction. Using the new
transition matrix, after necessary simplification and the satisfaction of the boundary conditions, yields a set
of simultaneous equations that leads to the characteristic matrix of vibration.
The mode shapes and the frequency parameters for different combinations of elastic or translational

restraint coefficients have been presented and compared with those available from other methods in the
literature. Also, the effect of the tapered ratio and the aspect ratio on the natural frequencies and the mode
shapes of the plates are presented. The good agreement with other methods demonstrates the validity and
the reliability of the proposed method.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Laminated plates are widely used in many engineering application. In some applications, the
designer has to construct variable thickness plates to save material or to meet certain criteria. The
vibration of uniform plates with elastically restrained boundary conditions has been investigated
by many authors [1–10]. Rais-Rohani and Marcellier [11] presented approximate analytical
solutions for the free vibration and buckling of rectangular anisotropic plates as well as
rectangular sandwich plates with edge restrained against rotation.
In many applications, rectangular plates with edge beams, such as building or bridge slabs, can

be modeled as elastically restrained plates [12]. The elastic restraints can also be used in wing
structures [11], in modeling the cracks in beam or plates [13] and modeling step in a beam or plates
[14]. Sonoda and Kobayashi [15] presented an exact solution for isotropic variable thickness plate
in one direction with two opposite edges being simply supported and the other two edges being
elastically restrained against rotation. Grossi and Bhat [16] used Rayleigh–Ritz method with the
boundary characteristics orthogonal polynomials as shape functions and Rayleigh Schmidt
method to find the natural frequencies of isotropic tapered rectangular plates with edges
elastically restrained against rotation and translation. Gutierrez and Laura [17] used the
differential quadrature method to determine the fundamental frequencies of rectangular plates
with linearly varying thickness and non-uniform boundary conditions. Filipich et al. [18] used the
Galerkin method to obtain an approximate solution to the vibration of isotropic rectangular
plates of variable thickness with two opposite edges simply supported and very general boundary
conditions on the other two edges. Li [19] used an analytical approach to determining natural
frequencies and mode shape of non-uniform flexural-shear plates. Ashour [20] used the finite strip
transition matrix method to investigate the vibration of isotropic variable thickness plates with
edges restrained against both rotation and translation.
To the best of the author’s knowledge there is no publication available in the open literature on

this problem. The main objective of this paper is to determine the natural frequencies of cross-ply
symmetrically laminated plates of variable thickness subjected to elastically restrained boundary
conditions against both rotation and translation in the variable thickness direction and any
combination of clamped or simply supported boundary conditions in the other direction.
2. Governing equations of elastic restrained plates

Consider a cross-ply symmetrically laminated rectangular plate of variable thickness h; length a;
width b; density r and with elastically restrained boundary conditions at y ¼ 0 and b as shown in
Fig. 1.
The governing equation can be written as

D̄11
h3ðyÞ

h30
W xxxx þ 2ðD̄12 þ 2D̄66Þ

h3ðyÞ

h30
W xxyy þ

1

h30

qh3ðyÞ

qy
W xxy

" #
þ n12D̄22

1

h30

q2h3ðyÞ
qy2

W xx

þ
D̄22

h30
h3ðyÞW yyyyy þ 2

qh3ðyÞ

qy
W yyy þ

q2h3ðyÞ
qy2

W yy

� �
¼ �m̄0

hðyÞ

h0
W tt, ð1Þ



ARTICLE IN PRESS

x

y

y

z

R 0
Rb

T0 Tb

Fig. 1. An elastically restrained laminated plate with variable thickness.

A.S. Ashour / Journal of Sound and Vibration 288 (2005) 33–42 35
where W is the flexural displacement, D̄ij ¼ Dij ðh
3=h30Þ are the bending rigidities, h0 is the plate

height at y ¼ 0;

Dij ¼
XN

k¼1

Z h=2

�h=2
Q

ðkÞ
ij z2 dz; i; j ¼ 1; 2; 6 (2)

and Q̄
k

ij are the plane stress transformed reduced stiffness coefficients of the lamina in the laminate
coordinate system oxyz. They are related to the reduced stiffness coefficients of the lamina in the
material axes of the lamina Qk

ij by proper coordinate relationships which are available in many
texts and can be expressed in terms of Engineering notations as

Q11 ¼
E11

ð1� n12n21Þ
; Q22 ¼

E22

ð1� n21n12Þ
; Q12 ¼

n21E11

ð1� n12n21Þ
; Q21 ¼ Q12; Q66 ¼ G12. (3)

Here E11; E22 are the longitudinal and transverse plate moduli, respectively, and G12 is the in-
plane shear modulus, and n12 and n21 are the Poisson’s ratios.
2.1. Boundary conditions

The considered boundary conditions along the y direction are elastically restrained against both
rotation and translation. At y ¼ 0; the boundary conditions for this case are

R0
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¼ 0, (4)
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T0W þ D220

q3W
qy3

þ ð2D30 � n12D220Þ
q3W
qx2y

¼ 0, (5)

where D3 ¼ D12 þ 2D66; the suffixes ‘‘0, b’’ means the rigidities are calculated at y ¼ 0 and b;
respectively. The boundary conditions on the other elastically restrained end y ¼ b are

Rb
qW
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q2W
qy2

þ n12
q2W
qx2

� �
¼ 0, (6)
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Þ
q3W
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¼ 0. (7)

The boundary conditions at the other two edges x ¼ 0 and a can be any combination of the
classical boundary conditions.

2.2. Method of solution and the eigenvalue problem

Assuming a solution of the form

W ¼
XM

m¼1

X mðxÞymðyÞ, (8)

where X m are the beam functions that satisfy the boundary conditions at x ¼ 0 and a: The
governing equation can be transformed into 4M number of first-order differential equations in
terms of the normalized coordinates which can be solved as in Ref. [21]. In many papers, e.g. Refs.
[1,3], the boundary conditions are solved approximately by neglecting some of the terms in Eqs.
(4)–(7). In this paper, the elastically restrained boundary conditions are solved exactly. Using Eq.
(8), the boundary conditions at the normalized coordinates Z ¼ 0 are
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In the next sections, the symbol S–C–S–ER for example means, that the edges x ¼ 0; y ¼ 0;
x ¼ a; y ¼ b are simply supported, clamped, simply supported and elastically restrained,
respectively. A linearly tapered plate is used to illustrate the above technique with the following
non-dimensional variable thickness hðZÞ ¼ 1þ dZ; where d is called the taper ratio.
3. Convergence and comparison investigation

3.1. Convergence analysis

Since no solution exists for the above problem, one has to carry out several convergence studies.
First, a convergence investigation is carried out to examine the effect of number of terms of the
power series M used in the solution. The results are shown in Table 1 for uniform three-layer
cross-ply symmetrically laminated plates (90/0/90). The material properties used in this case are
given by E22=E11 ¼ 40; G12=E11 ¼ 0:6; n21 ¼ 0:25; the aspect ratio b ¼ 1; and the frequency
parameter l is l ¼ oa2=h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=E11Þ

p
: From Table 1, it is very clear that the method converge very

rapidly. Then, convergence studies of the frequency parameter for three-ply (90,0,90)
C–ER–C–ER plate with uniform and varying thickness plates are carried out for equally
elastically restrained plate ðfTa

¼ fTb
¼ fRa

¼ fRb
¼ 100Þ: The results are shown in Table 2, it is

clear the method converges much faster, only after few terms.
3.2. Comparison analysis

The first four frequency parameters O for uniform laminated plates subject to classical
boundary conditions are presented and compared with results from Ref. [23] in Table 3. It can be
Table 1

Convergence investigations of the frequency parameters l for three-ply 90,0,90 simply supported SSSS and SCSC plates

(b ¼ 1)

M l1 l2 l3 l4

SSSS 1 18.8913 26.9401 46.2420

2 18.8913 26.9401 46.2420 71.6202

3 18.8913 26.9401 46.2420 71.6202

4 18.8913 26.9401 46.2420 71.6202

5 18.8913 26.9401 46.2420 71.6202

6 18.8913 26.9401 46.2420 71.6202

(Exact [22]) 18.891

CSCS 1 40.7435 45.2365 59.0590 84.8359

2 40.7434 45.2344 59.0511 84.8192

3 40.7434 45.2344 59.0511 84.8192

4 40.7434 45.2342 59.0503 84.8174

5 40.7434 45.2342 59.0503 84.8174

(Exact [22]) 40.743
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Table 2

Convergence investigation of frequency parameters l for three-ply 90,0,90 C–ER–C–ER-plate with uniform and

varying thickness plates

d M l1 l2 l3 l4

ER ¼ 100 0.0 2 40.5422 41.6811 46.0965 59.3214

0.0 3 40.5421 41.6809 46.0945 59.3136

0.0 4 40.5421 41.6809 46.0945 59.3136

0.0 5 40.5421 41.6809 46.0943 59.3128

0.4 2 44.3975 51.4047 56.5283 70.5018

0.4 3 44.3973 51.4036 56.5267 70.4925

0.4 4 44.3973 51.4036 56.5267 70.4925

0.4 5 44.3973 51.4035 56.5265 70.4915

Table 3

The frequencies parameters Oi of three-ply uniform laminated plates 90,0,90 for different combinations of boundary

conditions with some comparison (N ¼ 6)

Boundary condition Reference O1 O2 O3 O4

CCCC Present 14.6680 17.6187 24.5396 35.6562

[23] 14.666 17.614 24.511 35.532

CFCF Present 14.0758 14.2218 15.1026 18.2373

[23] 14.072 14.199 15.037 18.136

SSSS Present 6.6254 9.4482 16.2177 25.1181

[23] 6.625 9.447 16.205 25.115

SCSC Present 7.3962 12.1480 20.8719 25.3685

[23] 7.396 12.144 20.841 25.365

SFSF Present 6.2093 6.4730 8.0746 12.8690

[23] 6.208 6.436 7.975 12.752
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seen that the results agree very well with Ref. [23]. The frequency parameter O is obtained from l
using the relation O1 ¼ l=p2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12½1� n12n21�

p
:

Since no results are available in the literature for elastically retrained laminated plates with
variable thickness, we compare the results obtained from the limiting cases of the elastic restrained
boundary conditions (i.e. T ;R ! 1 or 0). Table 4 shows the frequency parameters O0

1 for
elastically restrained single layer uniform and variable thickness laminated plates compared with
some available results in the literature. Three cases have been considered for equally elastically
restrained boundary conditions at y ¼ 0 and b;
I.
 R1;2 ! 1 and T1;2 ! 1; the clamped–clamped case,

II.
 R1;2 ! 0 and T1;2 ! 1; the simply supported–simply supported case,

III.
 R1;2 ! 0 and T1;2 ! 0; the free–free case.
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Table 4

Comparison of frequency parameters O0
i of elastically retrained uniform and variable thickness plates (N ¼ 6)

BC fr fi d O0
1 O0

2 O0
3 O0

4

SSSS 0 15.19479 33.29969 44.42631 60.78307

SERSER 0.00E+00 1.00E+07 0 15.19477 33.29963 44.42608 60.78303

[24] 15.1946 33.2996 44.4188 60.7787

CCCC 0 29.10724 50.83234 67.32315 87.15097

CERCER 1.00E+07 1.00E+07 0 29.10721 50.8323 67.32296 87.15091

SSSS 0.4 18.17806 39.78196 53.04357 72.65364

SERSER 0.00E+00 1.00E+07 0.4 18.17801 39.78184 53.04317 72.65298

[24] 0.4 18.17794 39.78182 53.0339 72.6440

CCCC 0.4 34.72033 60.57577 80.27028 103.4959

CERCER 1.00E+07 1.00E+07 0.4 34.72027 60.57569 80.26991 102.3028

SERSER 1.00E�07 1.00E�07 0.4 7.54536 13.79558 29.49693 36.71928

SFSF 0.4 7.54536 13.79558 29.49693 36.71928

[24] 7.54537 13.79558 29.49693 36.71695
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The frequency parameter O0
1 is defined by O0

1 ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E11=E22

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12½1� n12n21

p
�: The

material properties used in this case are those used by Liew [23], E11 ¼ 24:8; E22 ¼ 60:7; G12 ¼

12; n21 ¼ 0:23 and n12 ¼ 0:09397; the results agree very well with other results in the
literature.
4. Numerical results

A parametric investigation is carried out to study the effect of elastic restraint coefficients on
both the frequency parameters and the modes shapes for uniform and non-uniform laminated
plates. The normalized frequency parameter l defined earlier, m ¼ 4 and N ¼ 20 is used in all
calculations. Fig. 2 shows the first three frequency parameters and the mode shapes for different
elastic restraint coefficients. In this case, a square laminated plate (with the same laminated
material as in Table 1) with simply supported at x ¼ 0 and a is considered. The elastically
restrained coefficients at the boundary y ¼ 0 and b are considered equal ðfTa

¼ fTb
¼

ft ¼ fRa
¼ fRb

¼ fr). From the figures, one can deduce that the frequency parameters and the
mode shapes are affected drastically in certain range for uniform plates 1ofo1000; the upper
limit of this range increases with the increase of the taper ratio d and also increases for higher
modes.
The effect of the taper ratio ðdÞ on the fundamental frequency parameter and mode shape is

presented in Fig. 3 for d ¼ 0; 0:2 and 0.4 and for different elastic restraint coefficients for the same
laminated material as in Fig. 2. It can be seen that the effect of the elastic restraint coefficient is
significant only in the range 1ofo1000: This effect increases as the taper ratio d increases. Also,
it can be seen that the side with small thickness has been affected more than the other side of the
variable thickness plate.
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Fig. 2. The first three frequencies and modes shape of elastically restrained variable thickness laminated plates ðd ¼

0:2Þ:
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5. Conclusion

The finite strip transition matrix method is utilized to investigate the vibration of laminated
plates of variable thickness. The lamination used is limited to symmetric cross-ply. The boundary
conditions considered in this paper are any combination of elastic restraints against translation,
rotation or both in the variable direction and any combination of classical boundary condition in
the other side. The effect of the elastic restraint coefficients on the vibration frequency parameters
and mode shapes are investigated and presented.
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Fig. 3. The fundamental frequency parameter l and mode for laminated plates of variable thickness ðd ¼ 0; 0:2; 0:4Þ for
different elastic restraint coefficients.
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The results presented in this paper for elastically restrained laminated plated can be considered
as new in the literature and can be useful for designers and engineers.
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